Identification of BMP and Activin Membrane-Bound Inhibitor (BAMBI) as a Potent Negative Regulator of Adipogenesis and Modulator of Autocrine/Paracrine Adipogenic Factors
نویسندگان
چکیده
Adipose tissue dysfunction underpins the association of obesity with type 2 diabetes. Adipogenesis is required for the maintenance of adipose tissue function. It involves the commitment and subsequent differentiation of preadipocytes and is coordinated by autocrine, paracrine, and endocrine factors. We previously reported that fibroblast growth factor-1 (FGF-1) primes primary human preadipocytes and Simpson Golabi Behmel syndrome (SGBS) preadipocytes and increases adipogenesis through a cascade involving extracellular signal-related kinase 1/2 (ERK1/2). Here, we aimed to use the FGF-1 system to identify novel adipogenic regulators. Expression profiling revealed bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI) as a putative FGF-1 effector. BAMBI is a transmembrane protein and modulator of paracrine factors that regulate adipogenesis, including transforming growth factor (TGF) superfamily members (TGF-β and BMP) and Wnt. Functional investigations established BAMBI as a negative regulator of adipogenesis and modulator of the anti- and proadipogenic effects of Wnt3a, TGF-β1, and BMP-4. Further studies showed that BAMBI expression levels are decreased in a mouse model of diet-induced obesity. Collectively, these findings establish BAMBI as a novel, negative regulator of adipogenesis that can act as a nexus to integrate multiple paracrine signals to coordinate adipogenesis. Alterations in BAMBI may play a role in the (patho)physiology of obesity, and manipulation of BAMBI may present a novel therapeutic approach to improve adipose tissue function.
منابع مشابه
Bambi is coexpressed with Bmp-4 during mouse embryogenesis
Signaling of TGF-beta superfamily members is tightly controlled by an elaborate network of regulators (for recent review see Trends Genet. 15 (1999) 3; Genes Dev. 14 (2000) 627). Recently, the transmembrane protein BAMBI (BMP and activin membrane-bound inhibitor) has been shown to interfere with Bmp and activin-like signaling by inhibiting Tgf-beta type I receptor activation (Nature 401 (1999) ...
متن کاملExpression of BMP and Actin Membrane Bound Inhibitor Is Increased during Terminal Differentiation of MSCs
Chondrogenic differentiating mesenchymal stem cells (MSCs) are mimicking embryonal endochondral ossification and become hypertrophic. BMP (bone morphogenetic protein) and Activin Membrane Bound Inhibitor (BAMBI) is a pseudoreceptor that regulates the activity of transforming growth factor-β (TGF-β) and BMP signalling during chondrogenesis. Both TGF-β and BMP signalling are regulators of chondro...
متن کاملMyostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis.
Myostatin, a transforming growth factor beta (TGF-beta) family member, is a potent negative regulator of skeletal muscle growth. In this study we characterized the myostatin signal transduction pathway and examined its effect on bone morphogenetic protein (BMP)-induced adipogenesis. While both BMP7 and BMP2 activated transcription from the BMP-responsive I-BRE-Lux reporter and induced adipogeni...
متن کاملBAMBI Elimination Enhances Alternative TGF-β Signaling and Glomerular Dysfunction in Diabetic Mice
BMP, activin, membrane-bound inhibitor (BAMBI) acts as a pseudo-receptor for the transforming growth factor (TGF)-β type I receptor family and a negative modulator of TGF-β kinase signaling, and BAMBI(-/-) mice show mild endothelial dysfunction. Because diabetic glomerular disease is associated with TGF-β overexpression and microvascular alterations, we examined the effect of diabetes on glomer...
متن کاملTGF-β/BAMBI pathway dysfunction contributes to peripheral Th17/Treg imbalance in chronic obstructive pulmonary disease
BMP and activin membrane-bound inhibitor (BAMBI) is postulated to inhibit or modulate transforming growth factor β (TGF-β) signaling. Furthermore, strong upregulation of BAMBI expression following in vitro infection of chronic obstructive pulmonary disease (COPD) lung tissue has been demonstrated. In this study, we investigated whether TGF-β/BAMBI pathway is associated with COPD. Blood samples ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012